PYTHAGORA'S RULE (THEOREM)

- 1. Pythagoras theorem is all about right-angled triangle.
- 2. In a right angled triangle, the hypothesis is the longest side and it is the side opposite the right angle (90°).

The other two sides are referred to as "Sides adjacent to the right angle". Small letters are usually used to represent the sides of a triangle.

3. The Pythagoras theorem states that "In a right angled triangle, the square of the hypotheses are equal to the sum of the squares of the other two sides". i.e From the above diagram

$$C^2 = a^2 + b^2$$

C Squared = a squared + b squared

Find the length of the hypotenuse in a right angled triangle.

Example: Calculate the length of the sides marked x, y and z (hypotenuse) in the diagrams below.

1.

3

Solution

1. In triangle ABC, the marked side x is the hypotenuse

Therefore $AB^2 = AC^2 + BC^2$ (Pythagoras theorem)

$$X^2 = 5^2 + 12^2$$

$$X^2 = 25 + 144$$

$$X^2 = 169$$

To obtain the square root of the both side

$$vx^2 = v169$$

$$x = \pm 13$$

Since distance will always be positive, we ignore B, therefore x = 13cm

2. In \triangle PQR, the marked side y be the hypotenuse

Therefore $PQ^2 = PR^2 + QR^2$

$$Y^2 = 7^2 + 9^2$$

$$Y^2 = 49 + 81 = 130$$

$$vy^2 = v130$$

$$y = 11.4cm$$

3. In \triangle XYZ, the marked side z is the hypotenuse.

Therefore $XY^2 = XZ^2 + YZ^2$ (Pythagoras theorem)

$$Z^2 = 10^2 + 24^2$$

$$Z = 100 + 576 = 676$$

$$Vz^2 = V676$$

$$Z = 26cm$$

Assignment

Calculate the length of the sides marked a, b, c, d, e in the following diagrams. All units are in cm.

1.

2.

